

siemens.com/answers

Содержание цикла лекций

- 26.11.14 Общий обзор высокоскоростного движения, история развития и международные проекты (Испания, Китай, Россия);
- 19.12.14 Высокоскоростные поезда в Германии;
- 20.02.15 Системы автоматизации и связи;
- 20.03.15 Электрификация и электроснабжение;
- 24.04.15 Управление и финансирование проектов высокоскоростных магистралей; проект-менеджмент и социально-экономические аспекты.

© Siemens LLC 2014 All rights reserved.

Содержание лекции

© Siemens LLC 2014 All rights reserved.

2014.11.26

- 1. Введение, представление Дитриха Мёллера и бизнеса концерна «Сименс» России
- 2. Определение высокоскоростного железнодорожного транспорта
- 3. Развития высокоскоростного железнодорожного транспорта
- 3.1. Первые шаги Япония
- 3.2. Европа на пути ВСМ Франция
- 3.3. Германия
- 3.4. Испания
- 3.5. Италия
- 3.6. Корея
- 3.7. США
- 3.8. Китай
- 3.9. Турция
- 4. Развитие ВСМ в России
- 5. Вопросы и ответы

SIEMENS

Дитрих Мёллер, Президент «Сименс» в России и Центральной Азии

Образование:

Киевский Политехнический институт – «инженер электротехник».

Технический Университет в Дрездене – кандидат технических наук.

Профессиональная деятельность:

1982-1990 гг. - ELPRO AG, Германия. Последняя должность: директор Департамента НИОКР 1991-2006 гг. - «Siemens AG», Германия. Последняя должность: Руководитель бизнес-направления «Поезда» Департамента «Транспортная техника».

С 2006 г. - Президент «Сименс» в России, Вице-президент «Сименс АГ», Германия

© Siemens LLC 2014 All rights reserved.

«Сименс» в мире

- «Сименс АГ» крупнейший электротехнический концерн, мировой лидер в области решений для широкого спектра отраслей промышленности.
- Более 165 лет имя «Сименс» является синонимом передовых технологий, прогресса и неуклонного роста.
- Сегодня концерн представлен почти в 200 странах мира и объединяет более 357 тысяч сотрудников.
- В 2014 финансовом году (на 30 сентября 2014 г.)
 оборот концерна превысил 71,9 млрд. евро, а чистая прибыль составила почти 5,5 млрд. евро.

SIEMENS

«Сименс» в России и Центральной Азии: цифры и факты

- Около 3000 сотрудников
- Оборот в 2014 г. более €2,0 млрд.
- Объем новых заказов €1,7 млрд.
- Широкий спектр продукции и услуг комплексные решения для различных отраслей российской экономики

Основные стратегические направления:

- Локализация
- Регионализация
- Энергоэффективность

© Siemens LLC 2014 All rights reserved.

«Сименс»: проектная кампания с самого начала

1870: Европейская телеграфная линия от Лондона до Калькутты длиной более 11.100 км через Пруссию, Россию, Черное море, Персию и Индийский океан;

Начало эксплуатации 12. апреля 1870г. в срок; Объём заказа = £400,000 (около £20,000,000 в сегодняшнем эквиваленте)

Ответственные руководители:

Werner von Siemens Berlin

Wilhelm (William) Siemens London

Carl Siemens St. Petersburg

Инновации – движущая сила прогресса

Индустриальная экономика

Постиндустриальная экономика

1848-1849

Первая телеграфная линия в Германии

1879

Первая электрическая железная дорога

1903

Первый высокоскоростной электровоз

1958

Первый имплантируемый кардиостимулятор

2002

2000

Transrapid Шанхай

1800

1900

1853-1855

Строительство русской телеграфной сети

1886

Строительство системы освещения Электровоз Е44 Невского проспекта и Зимнего Дворца

1959 Электронная система управления Simatic

2009

Первый высокоскоростной поезд Спасан для ОАО «РЖД»

Регион «Россия и Центральная Азия»: представительства и региональные офисы

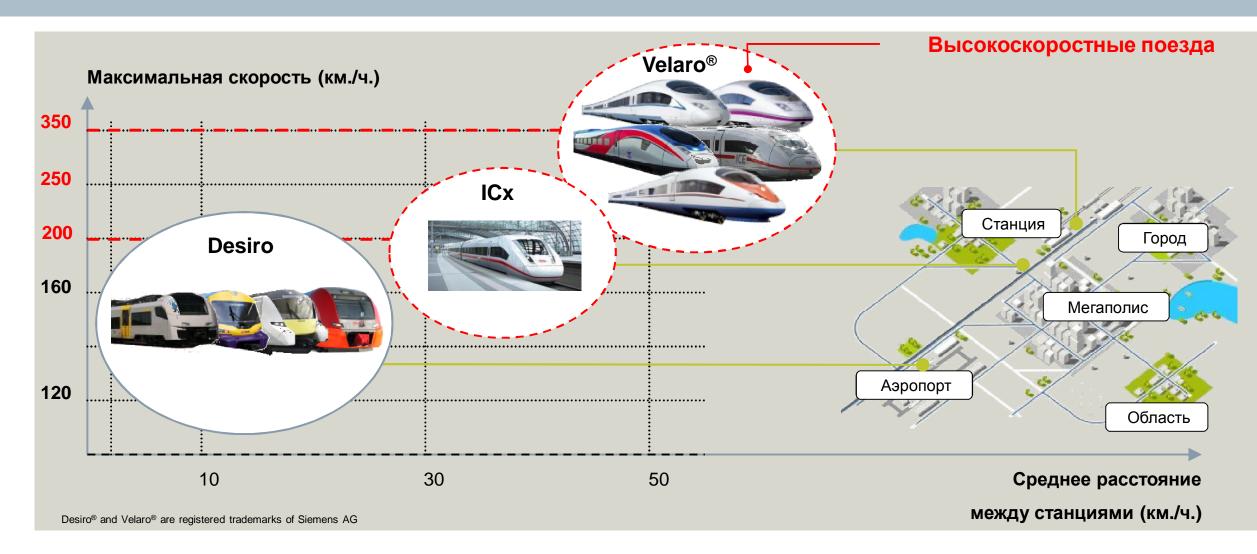
Определение высокоскоростного железнодорожного транспорта

Международный Союз Железных Дорог (UIC) определяет высокоскоростное движение по следующим основным характеристикам:

1. Инфраструктура:

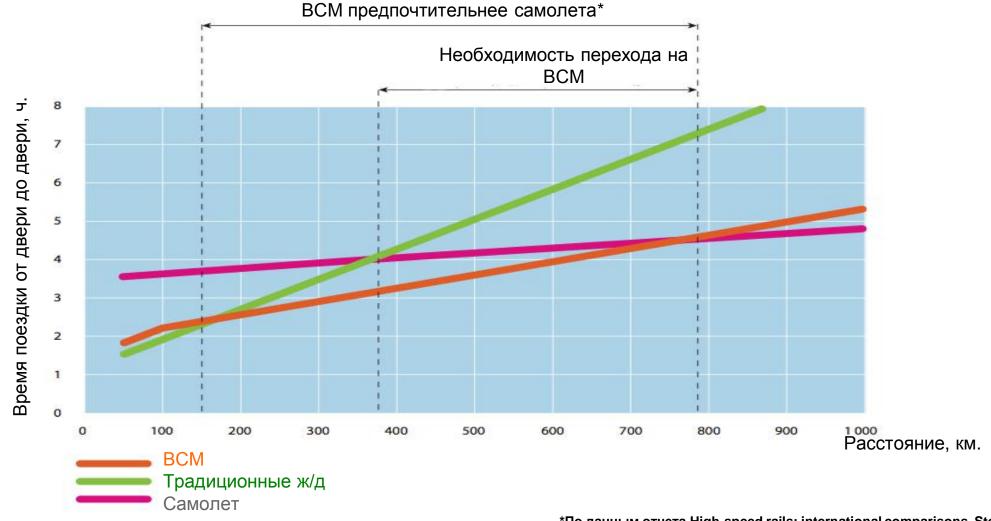
- Спроектирована специально для скоростей ≥250 км./ч.;
- Модернизирована для скоростей до 200 км./ч.

2. Подвижной состав:


 Движение на скоростях ≥250 км./ч. на специально спроектированном пути, с возможностью достижения ≥300 км./ч.

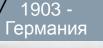
3. Совместимость:

• Подвижной состав должен быть спроектирован с учетом всех особенностей инфраструктуры.


Определение высокоскоростного поезда

[©] Siemens LLC 2014 All rights reserved.

Предпочтительность высокоскоростных железных дорог по времени пути



*По данным отчета High-speed rails: international comparisons, Steer Davies Gleave, Commission for Integrated Transport, London, 2010.

Этапы развития высокоскоростного железнодорожного транспорта

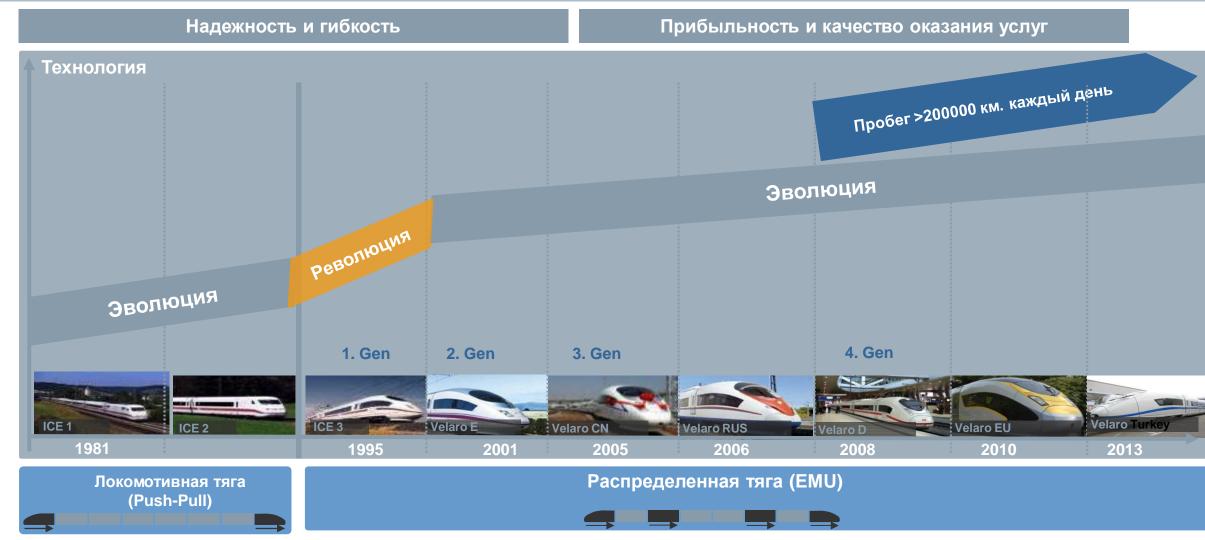
1903г. экспериментальный поезд с оборудованием Siemens-Halske развил скорость 206 км./ч. 1964г. Япония, высокоскоростной поезд Shinkansen между Токио и Осака, скорость до 210 км./ч. Высокоскоростная магистраль Париж-Леон с поездами TGV, скорость до 260 км./ч. 1991г. Линия Ганновер-Вюрцбург с поездами ІСЕ1, скорость до 280 км./ч. 1992г. Высокоскоростная магистраль Мадрид-Севилья 2009 г. - регулярное сообщение высокоскоростных поездов «Сапсан», скорость до 250 км./ч.. (Электропоезда ЭР200 находились в эксплуатации с 1984г.)

>

1981 – Франция 1991 - Германия

1992 -Испания • 1997 -Бельгия 2001 – Италия 2004 -Корея

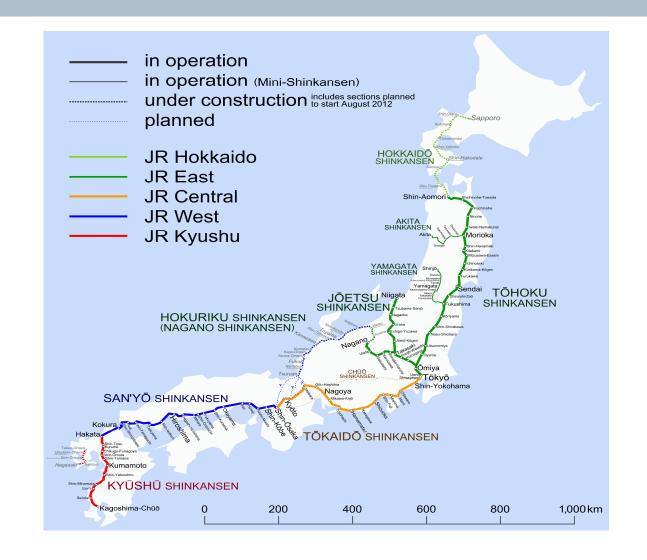
- > 2008 я Китай **2009 -** Россия



© Siemens LLC 2014 All rights reserved.

Эволюция принципов построения высокоскоростных поездов

[©] Siemens LLC 2014 All rights reserved.


Международное развитие высокоскоростного железнодорожного транспорта

siemens.com/answer

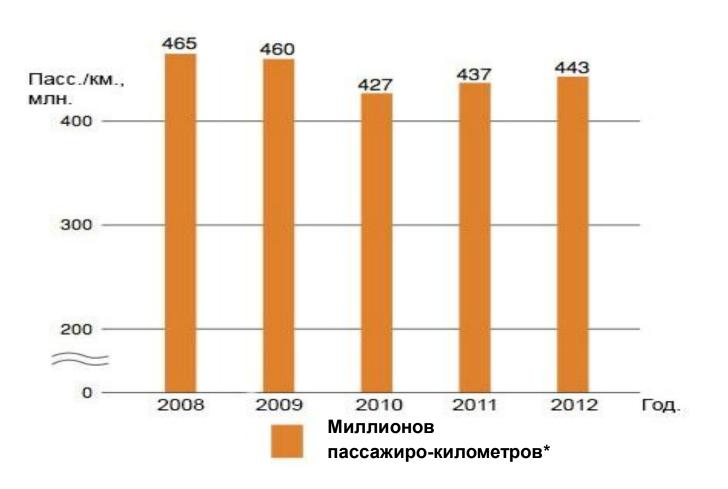
Япония

- Эксплуатация с: 1964 г.
- Протяженность участка: 2.387 км
- Линий: 6
- Колея: 1.435 мм
- Энергопитание:
 - 1 25 кВ пер. тока, 50 Гц
 - 1 25 кВ пер. тока, 60 Гц
- Кол-во поездов: >500
- Кол-во типов: >10

Япония – JR N700

Технические данные		
В эксплуатации	c 2007	
Составность	8 вагонов	16 вагонов
Электропитание	25 кВ пер. тока, 50/60	Гц
Мощность приводов	17.08 MW	
Максимальная скорость	260 км/ч	300 км/ч
Колея	1,435 мм	
Вместимость	546 мест	1323 места
Тип	EMU	

Япония – семейство поездов «Синкансэн»



«Синкансэ́н» — высокоскоростная сеть железных дорог в Японии для перевозки пассажиров между крупными городами страны.

Первая линия открыта между Осакой и Токио в 1964 году.

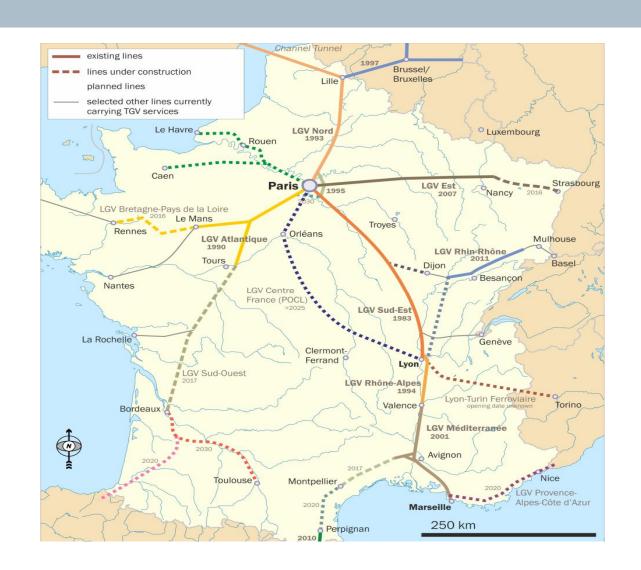
Япония – объемы перевозок

Рейсов в день	333
Пассажиров в день	391000
Пассажиров в год	143 млн.
Средняя задержка рейсов	0,6 мин.
Средняя эксплуатационная скорость	270 км/ч

^{*}По данным ежегодного отчета Японских национальных железных дорог за 2012г.

Развитие сети высокоскоростных железных дорог в Европе

Линии 270-320 км./ч.


Линии 200-230 км./ч.

- - - - Проектируемые

Франция

- Эксплуатация с: 1981 г.
- Протяженность участка: 2.037 км
- Линий: 10
- Колея: 1.435 мм
- Энергопитание:
 - 1 25 кВ пер. тока, 50 Гц
 - 1 1,5 кВ пост. Тока,
- Кол-во поездов: >550
- Кол-во типов: >7

Франция – TGV, тип PSE

Технические данные		
В эксплуатации	с 1992 г.	
Составность	10 вагонов	
Электропитание	25 кВ пер. тока, 50/60Гц	
Мощность приводов	8.8 МВт	
Максимальная скорость	320 км/ч	
Колея	1,435 мм	
Вместимость	377 мест	
Тип	Push-Pull	

Франция – TGV, Thalys

Технические данные		
с 1996 г.		
10 вагонов		
25 кВ пер. тока, 50Гц 3 кВ пост. тока.		
8.8 MBT		
320 км/ч		
1,435 мм		
377 мест		
Push-Pull		

Франция – Eurostar

Технические данные		
В эксплуатации	1992 — 1996 гг.	
Составность	20 вагонов	
Электропитание	25 кВ пер. тока, 50Гц 3 кВ пост. тока.	
Мощность приводов	12.2 МВт	
Максимальная скорость	300 км/ч	
Колея	1,435 мм	
Вместимость	750 мест	
Тип	Push-Pull	

Thalys - высокоскоростные железнодорожные маршруты из Франции

Thalys PBKA

- Париж;
- Брюссель;
- Кёльн;
- Амстердам.

Eurostar

- Лондон;
- Париж;
- Брюссель;

Velaro Eurostar (e320) - Оператор «Eurostar International» Ltd.

Многосистемный поезд для поездок из Великобритании во Францию, Бельгию и Голландию
• Боле высокие требования к пожарозащищенности.

Технические характеристики Производство 2012-2014 Составность 16 – вагонов Длина поезда 400 м Мощность 16,000 кВ Максимальная 320 км/ч эксплуатационная скорость 25 kV / 50 Hz перем. Питание 1, 5 kV, 3 kV пост. Колея 1435 мм Количество мест 900 Объем поставки 10 поездов

Франция – TGV Duplex

Технические данные	
В эксплуатации	1995 — 2012 гг.
Составность	10 вагонов
Электропитание	25 кВ пер. тока, 50Гц 1,5 кВ пост. тока.
Мощность приводов	8.8 MBT
Максимальная скорость	320 км/ч
Колея	1,435 мм
Вместимость	508 мест
Тип	Push-Pull

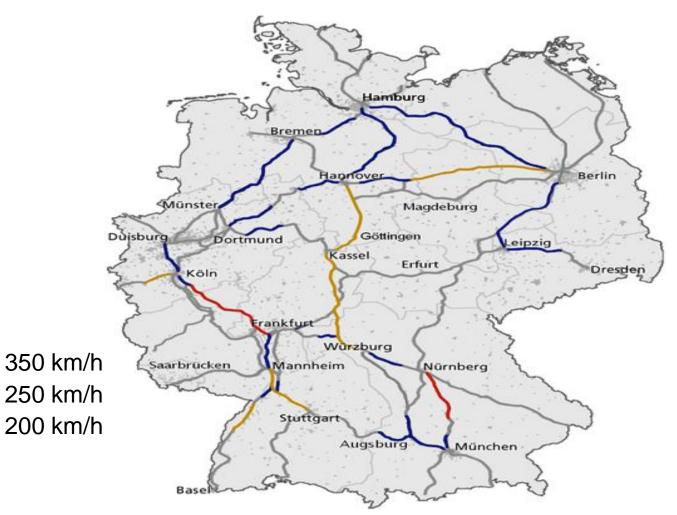
Германия

• Эксплуатация с: 1991 г.

• Протяженность сети ВСМ: 1.200 км

• Линий: 11

• Колея: 1.435 мм


• Энергопитание: 15 кВ переменного тока, 16,7 Гц

• Количество поездов: >300

250 km/h

• Количество типов: 5

200 km/h

Высокоскоростные железные дороги Германии

ICE 1

ICE 2

ICE 3

ICE T(TD)

Velaro D

ICE International - высокоскоростные железнодорожные маршруты из Германии

ICE 3:

• Париж;

• Брюссель;

• Амстердам;

ICE 1 и 2:

- Вена;
- Цюрих;
- Базель;
- Берн;
- Интерлакен.

ICE T (TD):

- Копенгаген;
- Apxyc;

Мировой опыт «Сименс» в проектах высокоскоростных поездов

Более 400 высокоскоростных поездов и компоненты для более 200 поездов по всему миру ICE T / ICT 2 / ICE TD, c 1991г. Германия 11 x 5-car EMU Россия, 2006 284 EMU 60 x 7-car EMU Velaro RUS 20 DMU 20 x 4-car DMU 16 x 10-car EMU (Голландия, ICE 3 + option Бельгия, 67 x 8-car EMU Швейцария) Velaro D. 2014 16 x 8-car EMU Китай, 2005 Velaro CN 60 x 8-car EMU Components for 237 EMU Турция 2013 Velaro Turkey 7 x 8-car EMU Англия 2013 Velaro e320 10 x 16-car EMU Испания 2007 Velaro E / E2

26 x 8-car EMU

ICE® is a registered trademark of DB AG

[©] Siemens LLC 2014 All rights reserved.

Velaro E (AVE S103) - 2007

Испания

- Эксплуатация с: 1992 г.
- Протяженность участка: 2.114 км
- Линий: 5
- Колея: 1.435 мм / 1.668 мм.
- Энергопитание: 25 кВ переменного тока, 50 Гц
- Количество поездов: >100
- Количество типов: 4

Испания – AVE Class 102 (2005 г.)

Технические данные	
В эксплуатации	С 2005 г.
Составность	14 вагонов (2 локомотива + 12 прицепных)
Электропитание	25 кВ пер., 50Гц.
Мощность приводов	8,2 МВт
Максимальная скорость	320 км/ч
Колея	1,435 мм
Вместимость	365
Тип	Push-Pull

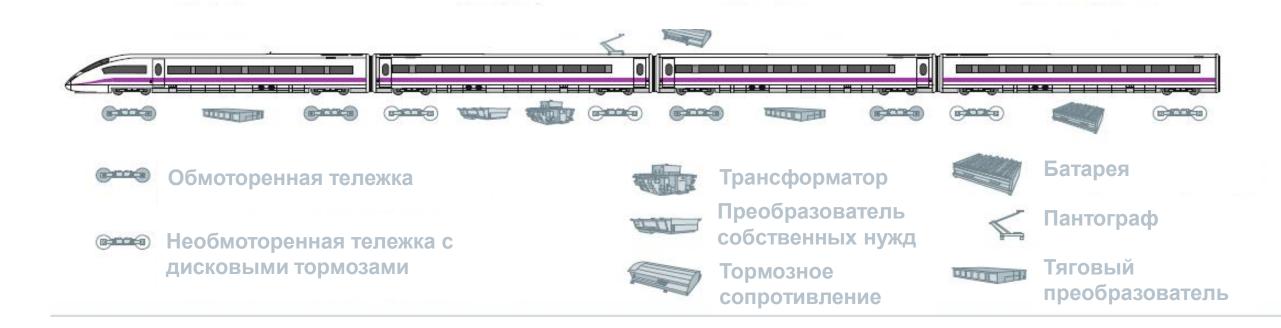
Velaro E (AVE S103) – для национальных железных дорог Испании

Первый электропоезд платформы Velaro. Построен на базе электропоездов ICE 3.

Первый электропоезд сертифицированный для скоростей 350 км./ч.

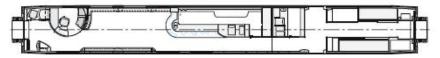
технические характеристики		
Производство	2004-2008	
Составность	8 вагонов	
Длина поезда	200 м	
Мощность	8,2 MB	
Максимальная эксплуатационная скорость	350 км/ч	
Питание	AC 25 kV / 50 Hz	
Колея	1435 мм	
Количество мест	405	

26 поездов (16+10)


Технические характеристики

Объем поставки

[©] Siemens LLC 2014 All rights reserved.


Velaro E (AVE S103) – особенности конструкции

- Распределенная тяга;
- Возможность использования по системе многих единиц
- Соответствие требованиям TSI;
- Модульный подход снижение нагрузки на путь, уменьшение времени на сервисное обслуживание

Velaro E (AVE S103) – особенности конструкции

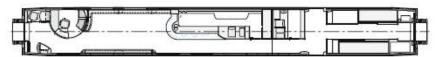
Intermediate car Cafeteria

Intermediate car Turista

Converter car Turista

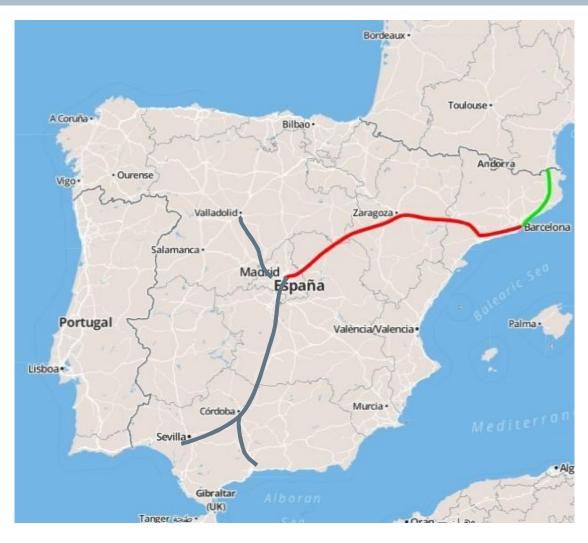
Transformer car Turista

End car Turista


End car Club

Transformer car Preferente

Converter car Preferente



Intermediate car Cafeteria

- Вместимость 405 человек;
- 3 вида планировки вагонов;
- Вагон ресторан и современные системы развлечения

Velaro E (AVE S103) – Эксплуатация

____ Скорос тная линия Мадрид – Барселона Характеристики:

- Расстояние 650 км.;
- Время в пути менее 2,5 часов

Особенности:

- Эксплуатация в условиях наружной температуры до +50С;
- Участки с наклонами до 40‰
- Продление участка до границы с Францией
- Остальные скоростные линии

Velaro E (AVE S103) – Сервис - максимальная надежность

Сервисный контракт (Совместное предприятие Siemens и Renfe):

- Срок: 15 лет
- 26 поездов Velaro E
- Сервис производится в депо La Sagra / Sta. Catalina

Задержка в расписании на 10 и более минут случается не чаще 1 раза на миллион километров пробега miles

Италия

- Эксплуатация с: 2001 г.
- Протяженность участка: 926 км
- Линий: 7
- Колея: 1.435 мм.
- Энергопитание:

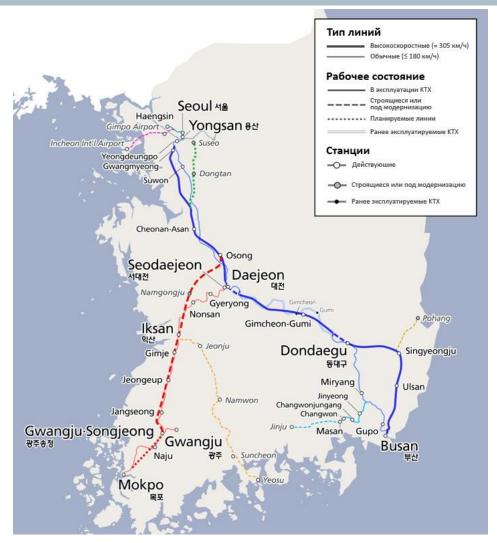
AC 25 кB, 50 Гц; DC 2 x 3 кB

- Количество поездов: >100
- Количествово типов: 4

Италия – ETR 500 (1993 г.)

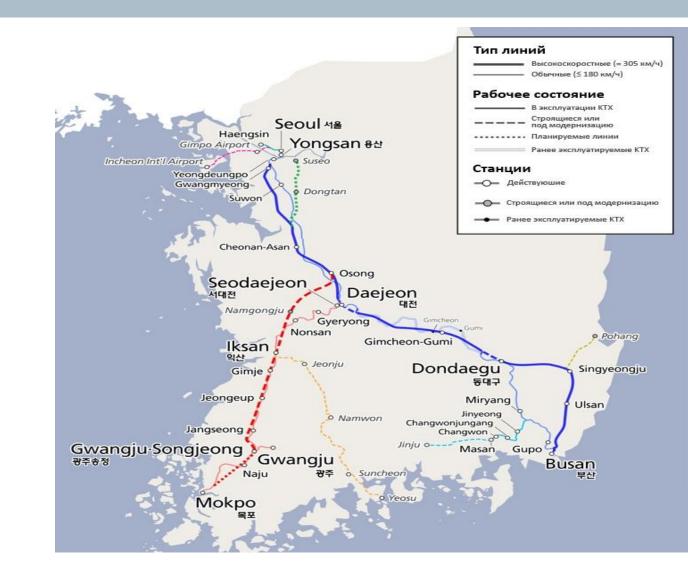
Технические данные		
1993 — 2007 гг.		
11 вагонов (2 локомотива + 9 прицепных)		
3 кВ АС		
8,8 МВт		
340 км/ч		
1,435 мм		
656		
Push-Pull		

Италия – AGV ETR 575 (2012 г.)



Технические данные	
В эксплуатации	С 2012 г.
Составность	11 вагонов
Электропитание	3 кВ АС
Мощность приводов	8,8 MBT
Максимальная скорость	350 км/ч
Колея	1,435 мм
Вместимость	460
Тип	EMU - электропоезд

Корея



- Тендер на поставку поездов и локализацию объявлен 26.08.1991
- Заявки на участие подали:
 - Alstom (TGV)
 - Siemens (ICE 2)
 - Mitsubishi (Shinkansen)
- Финальные предложения были поданы 15.06.1993
- Победителем объявили Alstom в сотрудничестве с Rotem
- Первые поезда КТХ-І поставили в 1997г.

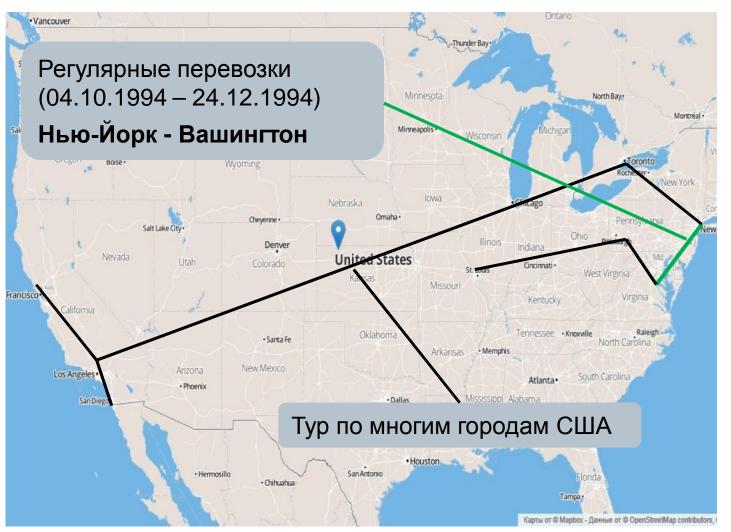
Корея

- Эксплуатация с: 2004 г.
- Протяженность участка: 346 км
- Линий: 1 + 1 строится
- Колея: 1.435 мм.
- Энергопитание: 25 кВ DC, 60 Гц;
- Кол-во поездов: 60
- Кол-во типов: 2

Корея – КТХ I (2004 г.)

Технические данные		
В эксплуатации	С 2004 г.	
Составность	20 вагонов (2 локомотива + 18 прицепных)	
Электропитание	25 кВ DC, 60 Гц;	
Мощность приводов	13,56 МВт	
Максимальная скорость	300 км/ч	
Колея	1,435 мм	
Вместимость	935	
Тип	Push-Pull	

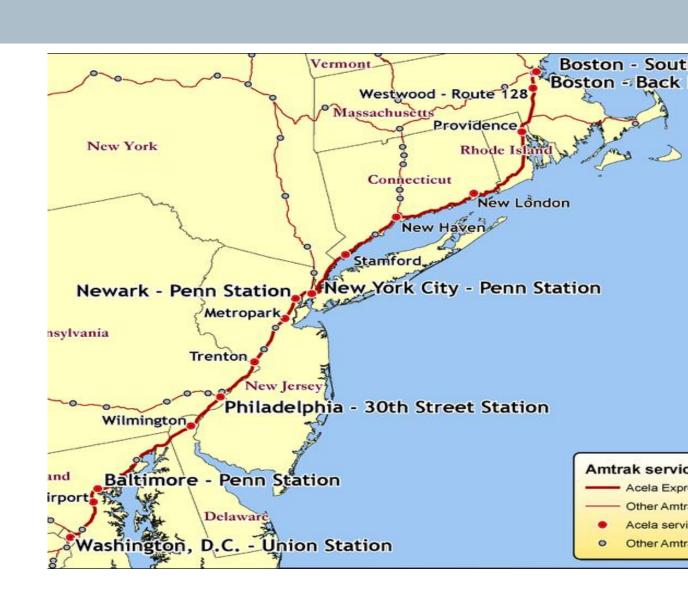
Корея – КТХ II (2010 г.)



Технические данные	
В эксплуатации	С 2010 г.
Составность	10 вагонов (2 локомотива + 8 прицепных)
Электропитание	25 кВ DC, 60 Гц;
Мощность приводов	8,8 МВт
Максимальная скорость	300 км/ч
Колея	1,435 мм
Вместимость	363
Тип	Push-Pull

ICE - Amtrak

ICE Amtrak


Изменения относительно ICE 1:

- питание 12кВ/25Гц;
- новый пантограф и автосцепка;
- Американские системы управления поездом;
- измененные профили колес.

Соединенные Штаты Америки

- Эксплуатация с: 2001 г.
- Протяженность участка: 720 км
- Линий: 1
- Колея: 1.435 мм.
- Энергопитание:
 - 1 25 кВ пер. тока, 60 Гц;
 - 2 12 кВ пер. тока, 25 Гц;
 - 3 12 кВ пер. тока, 60 Гц;
- Кол-во поездов: 20
- Кол-во типов: 1

США – Acela Express (2001г.)

Технические данные		
В эксплуатации	С 2001г.	
Составность	8 вагонов (2 локомотива + 6 прицепных)	
Электропитание	25 кВ пер. тока, 60 Гц; 12 кВ пер. тока, 25 Гц; 12 кВ пер. тока, 60Гц;	
Мощность приводов	4,6 MW	
Максимальная скорость	240 км/ч	
Колея	1,435 мм	
Вместимость	304	
Тип	Push-Pull	

Проекты в Китае

© Siemens LLC 2014 All rights reserved.

Проекты в Китае

Проекты в Китае

Китай – самый большой рынок для производителей подвижного состава

- Протяженность участка: 9300 км
- Количество линий: 9
- Колея: 1.435 мм.
- Энергопитание: 25 кВ АС, 50 Гц;
- Количество поездов: >500
- Количество типов поездов: >10

Velaro CN High-Speed Trainset (CRH3) – Chinese Ministry of Railways

Широкий корпус: 3,265 мм Локализация производства Технические характеристики Производство 2007-2010 Составность 8-вагонов Длина поезда 200 м Мощность 8,000 кВ Максимальная 300 км/ч эксплуатационная скорость Питание 25 kV / 50 Hz Колея 1435 мм Количество мест 601 Объем поставки 80 поездов

Velaro CN High-Speed Trainset (CRH3 350) – Chinese Ministry of Railways

Скорость: 350 км/ч

Длина поезда 400 м

Мощность 18,400 кВ

Максимальная эксплуатационная скорость

Питание 25 kV / 50 Hz

Колея 1435 мм

Количество мест 1053

2009-2012

16 – вагонов

120 поездов

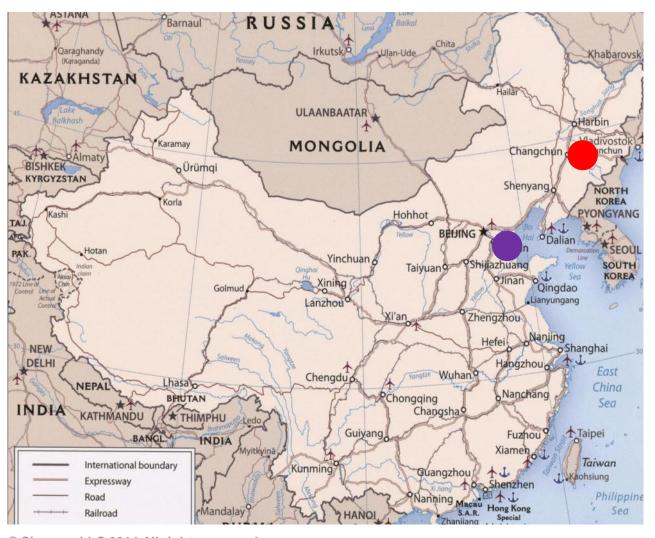
Технические характеристики

Производство

Составность

Объем поставки

Velaro CN High-Speed Trainset (CRH3 350) – Chinese Ministry of Railways



Эксплуатационная температура до - 40 ° С

Технические характеристики Производство 2011-2012 Составность 8-вагонов Длина поезда 200 м Мощность 9,200 кВ Максимальная 350 км/ч эксплуатационная скорость Питание AC 25 kV / 50 Hz Колея 1435 мм Количество мест 551 Объем поставки 40

Проекты в Китае – Локализация производства

Описание проекта	
Партнеры по локализации:	CNR Tangshan Railway Vehicle Co., Ltd. CNR Changchun Railway Vehicles Co., Ltd
Зона ответственности Siemens:	Разработка и производство
Передаваемые технологии:	Производство поездов (корпус); Производство тележек; Производство тягового оборудования; Программное обеспечение;
Общее количество поездов:	>150

Velaro Turkey - Оператор «TCDD»

Технические характерис	тики		
Производство	2013-2016		
Составность	8 — вагонов		
Длина поезда	200 м		
Мощность	16,000 кВ		
Максимальная эксплуатационная скорость	300 км/ч		
Питание	25 kV / 50 Hz		
Колея	1435 мм		
Количество мест	500		

7 поездов

Объем поставки

Velaro RUS (Сапсан) – История проекта

Velaro RUS (Сапсан) – История проекта

04/2005	— Заключение Договора о первом этапе проектирования;
05/2006	 Заключение Договора подряда на разработку, изготовление и поставку 8 высокоскоростных поездов в 2009 и Договора о техническом обслуживании на 30 лет: 4 односистемных поезда DC и 4 двухсистемных поезда AC/DC
04/2007	— Подписание Договора о техническом обслуживании на 30 лет;
2006 - 2008	Конструирование и разработка поезда;
12/2008	Изготовление и поставка первого поезда в Россию;
12/2009	Начало эксплуатации всех поездов Москва – Санкт-Петербург;
12/2011	Подписание контракта на поставку еще 8 односитемных поездов;
12/2013	Поставка поезда №009 в Россию
08/2014	Старт эксплуатации сдвоенных составов – самый длинный ВС поезд в мире
05/2015	——> Поставка поезда №016 в Россию

[©] Siemens LLC 2014 All rights reserved.

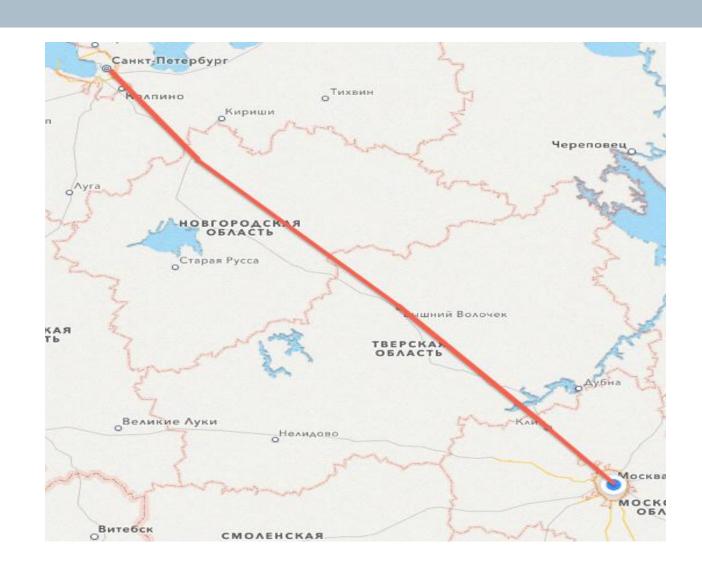
Россия

• Эксплуатация с: 2009 г.

• Протяженность участков: 1070км

• Линий: 2

• Колея: 1520 мм


• Энергопитание:

3 кВ AC;

2 х 25 кВ; 50 Гц.

• Кол-во поездов: 8+8

Кол-во типов: 1

Эксплуатация поезда Velaro в России

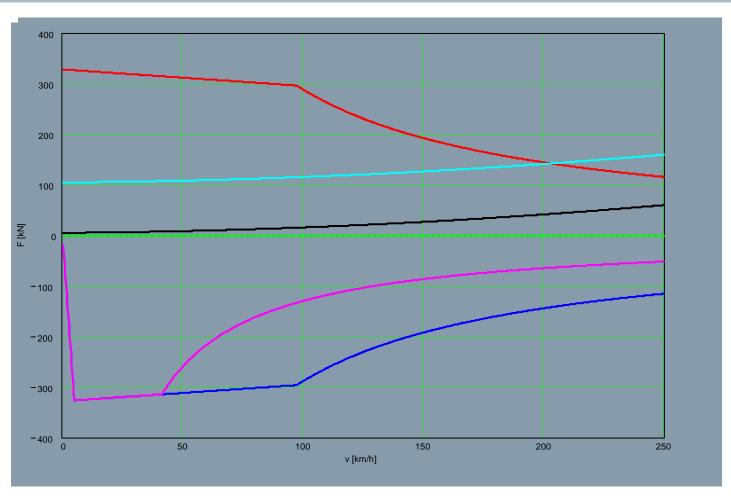
Россия – Velaro RUS «Сапсан» (2009 г.)

Технические данные	
В эксплуатации	С 2009 г.
Составность	10 вагонов
Электропитание	25 кВ, 50 Гц; 3 кВ АС
Мощность приводов	8,8 МВт
Максимальная скорость	250 км/ч
Колея	1,520 мм
Вместимость	604
Тип	EMU

Обзор поезда Velaro RUS, расположение вагонов

В1: 4 Высокоскоростных поезда: Москва – Санкт-Петербург, 3 кВ пост. ток

В2: 4 Высокоскоростных поезда: Москва – Санкт-Петербург, - Нижн. Новгород - 25кВ, 50Гц; 3кВ пост. ток



Nº	Название ваг.	Функция	Класс
1	SR B	Головной вагон с тяговым преобразователем	Бизнес-класс
2	DR T	Дроссельный вагон с 2 x сетевыми фильтрами	Туристский
3	SR T	Средний вагон с тяговым преобразователем	Туристский
4	TR T	Вагон с трансформатором	Туристский
5	MW T	Средний вагон	Туристский
6	BAT T	Средний вагон с аккумуляторной батареей	Туристский
7	BAT R	Ср. вагон с аккумуляторной батареей и бистро	Туристский

[©] Siemens LLC 2014 All rights reserved.

Тяга – кривая силы тяги / тормозной силы

V	
Кривая тягового усилия	
Кривая тормозного усилия электрических	
тормозов при рекуперативном торможении	
Кривая тормозного усилия электрических	
тормозов при реостатном торможении	
(напряжение сети присутствует и самое	
высокое число оборотов вентилятора)	
Сопротивление движению на ровном участке	
Сопротивление движению при подъеме 1,5 %	


Опробованная техника

- Кузов из алюминия с применением интегральных конструкций;
- Высокоскоростные тележки;
- Тяговый преобразователь GTO с входным регулятором;
- Опробованные асинхронные тяговые двигатели с воздушным охлаждением с коротко замкнутым ротором;
- Преобразователи бортовой сети с воздушным охлаждением в пассажирских вагонах.

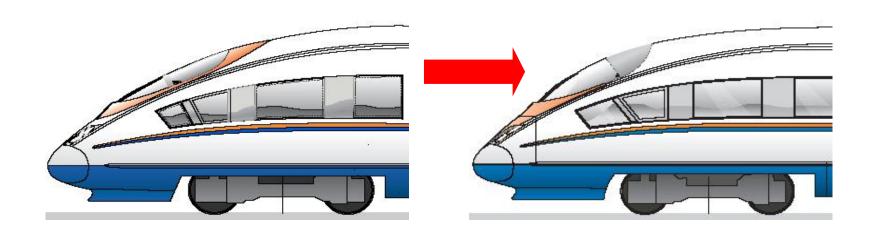
Новые решения для России

- Адаптация к условиям эксплуатации зимой за счет забора холодного воздуха на крыше;
- Адаптация к широкой колее и условиям эксплуатации зимой;
- Тяговый преобразователь IGBT с водяным охлаждением с подключением непосредственно к контактной сети;
- Новейшая разработка системы управления бортовой сетью на основе современной технологии Sibcos®

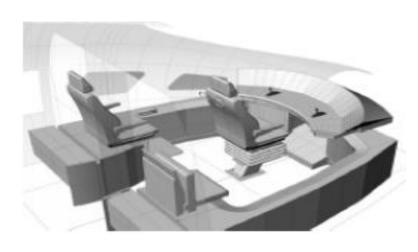
Новые разработки для России: Адаптация к широкой колее и условиям эксплуатации зимой.

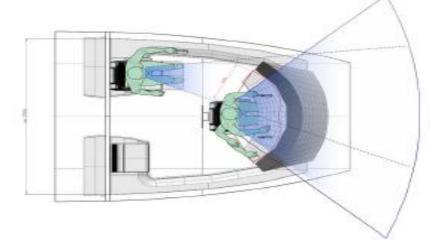
• Тележки:

- Конструкция для колеи 1520 мм.;
- Учет условий пути: увеличение хода рессорного подвешивания на 100 мм.;
- Использование марок стали с учетом минус 50 ° С;
- Проведение испытаний на прочность и виброустойчивость по российским нормам;


• Кузов вагона:

- Учет большого диапазона температур (колебание длины материала);
- Забор воздуха для охлаждения тяговых компонентов с крыши;
- Герметизация подвагонного пространства и предотвращение проникновения снега;
- Проведение испытаний на соударение для вагонов;

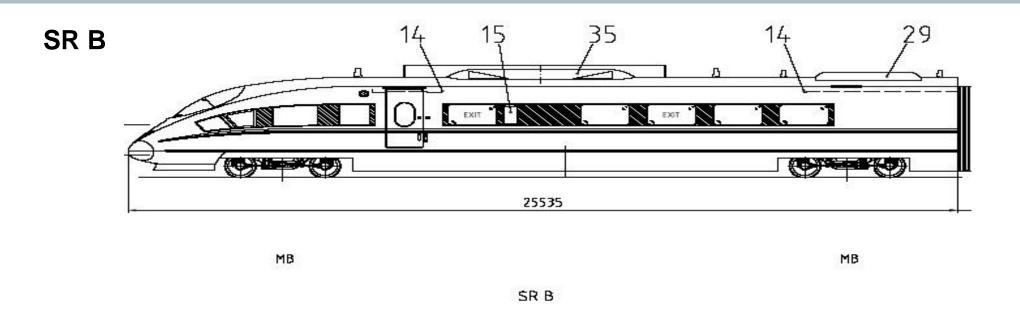

• Внутренние и внешние компоненты:

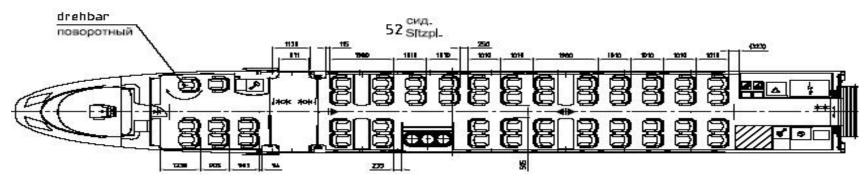

- Выбор компонентов для низких температур;
- элементы крепления;
- резиновые уплотнения, пластмассы;
- Защита подвагонного оборудования от снега и льда защитными щитами ;
- Токоприемники с пневматическим цилиндром с коротким ходом, обеспечивающим поднятие токоприемника из примерзшего состояния.

Адаптация головного вагона с кабиной машиниста для управления машинистом ростом 190 см в положении стоя.

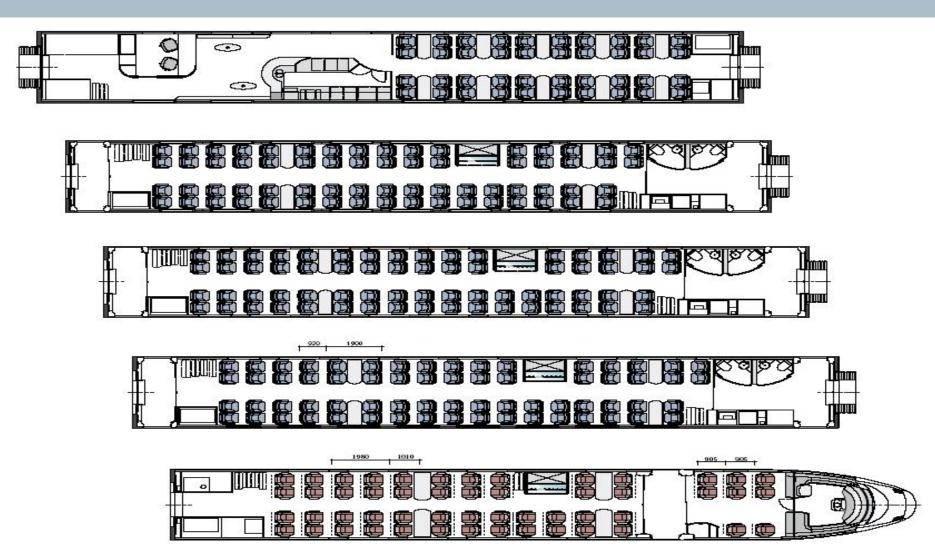
Адаптация кабины машиниста для работы машиниста и помощника машиниста.

© Siemens LLC 2014 All rights reserved.

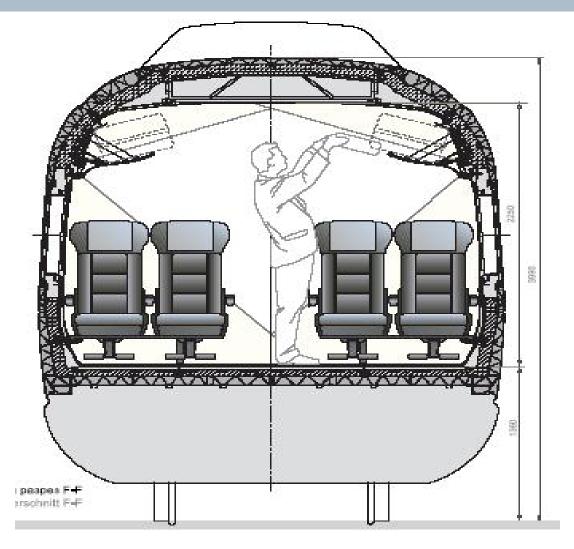


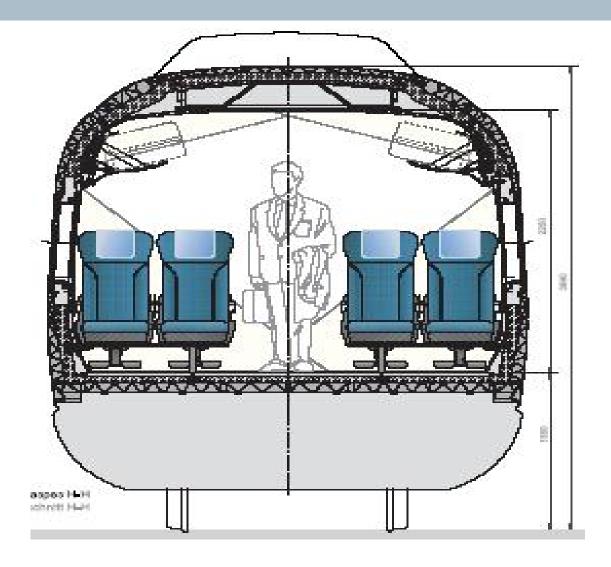

Новые разработки для России:

- Повышение состава с 8 вагонов до 10 вагонов,
- Учет требований российских нормативных документов. Применение стандартов и требований по сертификации железнодорожного транспорта в Российской Федерации:
 - выполнение требований ЭМС по ГОСТ 29205-81
 - конструктивное исполнение и испытание компонентов по российским стандартам
- Интеграция российских систем безопасности движения (КЛУБ-У) и российских систем радиосвязи,
- Использование российской головной сцепки СА 3,
- Установка дополнительных систем:
 - видео- наблюдение внутри и с наружи вагонов;
 - интернет в бизнес классе;
 - система 3 кВ для скорости 250 км/ч при 8 МВт тяговой мощности;
 - возможность двухсистемной эксплуатации;
 - отопление на 3 кВ постоянного и 440 В переменного напряжения (резервирование).


Velaro RUS: головной вагон

Velaro RUS: внутренняя компоновка вагонов




Velaro RUS: внутренняя компоновка вагонов

Velaro RUS: Поперечные разрезы вагона бизнес-класса и туристского класса

© Siemens LLC 2014 All rights reserved.


Velaro RUS: Дизайн бизнес-класса и туристского класса

SIEMENS

Проекты ВСМ в России

© Siemens LLC 2014 All rights reserved.

ВСМ 2 Москва - Казань

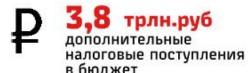
3,4 трлн. руб. Общий бюджетный эффект до 2030 г.

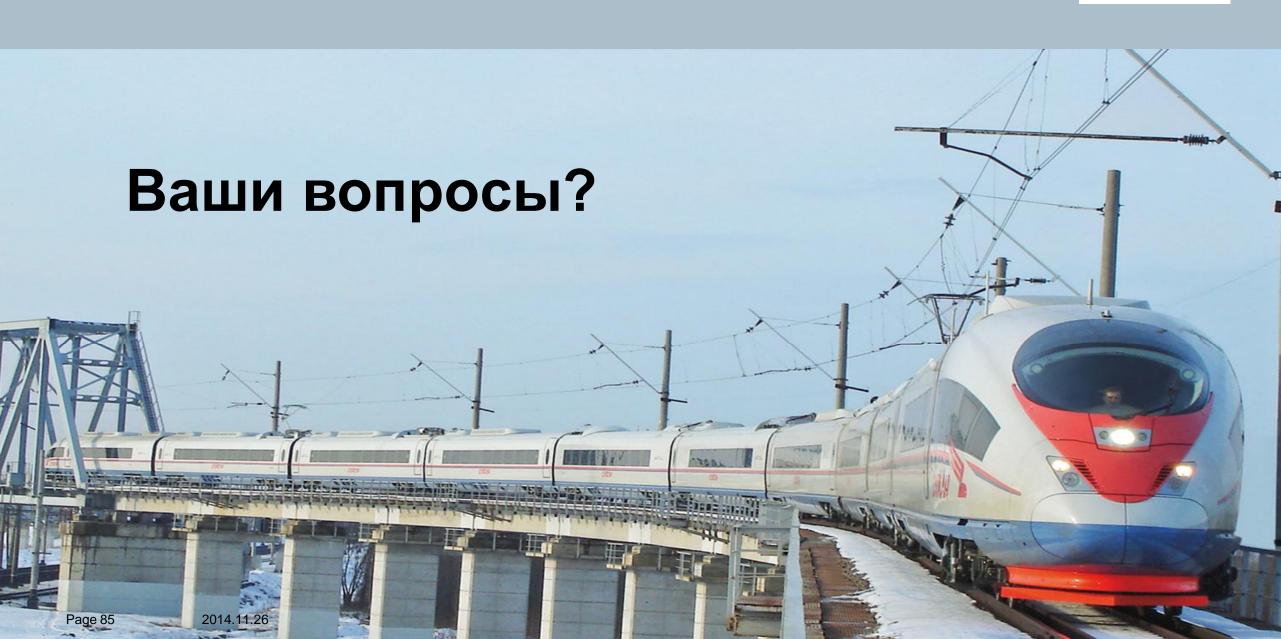
11,7 трлн. руб.

Совокупный прирост ВВП (за счет агломерационных эффектов) в период 2019-2030 гг.

28,0 трлн. руб.

Суммарный эффект на валовый выпуск экономики РФ


770 км протяженность ВСМ Москва - Казань



350 км/ч эксплуатационная скорость

